单通道输出当输入包含多个通道时,需要构造一个与输入数据具有相同输入通道数的卷积核,以便与输入数据进行互相关运算。假设输入的通道数为
ci,那么卷积核的输入通道数也需要为
ci。如果卷积核的窗口形状是
kh×kw,那么当
ci=1时,我们可以把卷积核看作形状为
kh×kw的二维张量。
然而,当ci>1时,我们卷积核的每个输入通道将包含形状为kh×kw的张量。将这些张量ci连结在一起可以得到形状为ci×kh×kw的卷积核。由于输入和卷积核都有ci个通道,我们可以对每个通道输入的二维张量和卷积核的二维张量进行互相关运算,再对通道求和(将ci的结果相加)得到二维张量。这是多通道输入和多输入通道卷积核之间进行二维互相关运算的结果。
def corr2d_multi_in(X, K):
# 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
|
多通道输出用ci和co分别表示输入和输出通道的数目,并让kh和kw为卷积核的高度和宽度。为了获得多个通道的输出,我们可以为每个输出通道创建一个形状为ci×kh×kw的卷积核张量,这样卷积核的形状是co×ci×kh×kw。在互相关运算中,每个输出通道先获取所有输入通道,再以对应该输出通道的卷积核计算出结果。
def corr2d_multi_in_out(X, K):
# 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。
# 最后将所有结果都叠加在一起
return torch.stack([corr2d_multi_in(X, k) for k in K], 0)
|
因为使用了最小窗口,1×1卷积失去了卷积层的特有能力——在高度和宽度维度上,识别相邻元素间相互作用的能力。
其实1×1卷积的唯一计算发生在通道上。
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
# 全连接层中的矩阵乘法
Y = torch.matmul(K, X)
return Y.reshape((c_o, h, w))
|
- 多输入多输出通道可以用来扩展卷积层的模型。
- 当以每像素为基础应用时,1×1卷积层相当于全连接层。
- 1×1卷积层通常用于调整网络层的通道数量和控制模型复杂性。
预览: